UTILITIES

A Function Library

ur WINCMD utility gave you
a command language inter-
preter for Windows 3.1. This is-
sue enhances the WINCMD
language by adding WCLIB, a
DLL (dynamic link library)
whose new functions will let
you move and size windows,
read and write files. access
the Windows Clipboard. and even con-
trol your multimedia devices from a
WINCMD program,

You can download both WIN-
CMD.EXE and WLIB.WCL from the
Utilities/Tips Forum of PC MagNet. as
explained in the *Utilities by Modem™
sidebar. You will also need to review the
original WINCMD article (PC Maga-
zine, April 27, 1993) to learn the
keywords. syntax. functions. and so on
that WCLIB augments. The C language
source code and related files for
WINCMD.ZIP and WLIB.ZIP are also
available in the Utilities/Tips Forum of
PC MagNet.

If you don’t have a modem. you can
still get the files without charge from PC
Magazine. Send a postcard with your
name, address, and preferred disk size
(360K. 720K. 1.2M or 1.44M) to the at-
tention of Katherine West, PC Magazine,
One Park Ave.. New York, NY 10016-
5802. Or fax a request to 212-503-5799;
no voice phone calls, please!

USING WCLIP To install WCLIB. you
must copy WCLIB.WCL into the same
directory as WINCMD.EXE. When
WINCMD is started it will automatically
add all the new WCLIB functions to the
WINCMD language. You use the
WCLIB functions exactly as you would
the standard WINCMD functions: Just
enter the name of the function, followed
by its parameters enclosed in paren-
theses.

WCLIB's new functions can be di-

BY DOUGLAS BOLING

vided into four functional groups: win-
dow management, file access, multi-
media. and Clipboard. A table listing
them all is shown in Figure 1.

WINDOW MANAGEMENT GROUP The func-
tion GetWindowHandle() returns the
handle for a window on the screen. In
Windows programming jargon. a handle
is a number that a program uses when re-
ferring to a window. To get the handle
of the Program Manager’s main window,
you would vse the function

proghand = GetWindowHandle (*Program

Manager")
In WCLIB, knowing a window’s han-

dle is the key to controlling that window.
The standard functions included in

With WCLIB, you can
expand your WINCMD

programs to give you

complete control over

your Windows desktop.

WINCMD. such as AppActivate(). al-
ways refer to windows by their title bar
text. Unfortunately. not all windows have
a litle bar or other text. The WCLIB func-
tions that involve windows use the win-
dow handle instcad and so can reference
any window on the screen.

The next two functions, SizeWin-
dow() and MoveWindow(), let a WIN-
CMD program scet the size and position
of windows on the screen. SizeWindow()
takes three parameters: the handle of the
window, the new width. and the new
height. The latter two parameters are
specified in pixels. For example. to resize

For WINCMD

the Program Manager window to a win-
dow 300 pixels wide by 200 high. you'd
use the following lines:

handle = GetWindowHandle ("Program
Manager")
SizeWindow (handle, 200, 308)
SizeWindow() returns TRUE (any non-
zero value) if the function was successful
and FALSE (a zero value) if it was not.

The MoveWindow() function simi-
larly takes three arguments: the window
handle. the horizonal position. and the
vertical position. To parallel the previous
example. to move the Program Manager
window to the top-left corner of the
screen, the commands would be

handle = GetWindowHandle ["Program
Manager")

MoveWindow (handle, 0, 0

As with the SizeWindow() function.
MoveWindow() returns TRUE if the
function was successful in moving the
window and FALSE if it was not.

While you often want to move and size
a window, there are times when vou sim-
ply wish to minimize or maximize it. To
minimize a window to an icon. you use
the function MinimizeWindow(). whose
only parameter is the handle of the win-
dow. Similarly. MaximizeWindow()
zooms a window Lo cover the entire desk-
top. and RestoreWindow() restores a
window from an iconic or maximized
state. Both also take only the window
handle as a parameter. All three of these
functions return TRUE if the function
was successful and FALSE otherwise.

Since being able to learn the specific
position and size of a window is just as
important as being able to move or size
it yourself, WCLIB includes three func-
tions that return information in this area.

313

MAY 25, 1993 PC MAGAZINE

GetWindowSize() takes one parameter,
the window handle, and it returns the size
of the window. Both the width and height
of the window are encoded in the one re-
turned parameter. The width of the win-
dow is contained in the lower half of the
returned value; the height is contained in
the upper half. To separate the two val-
ues, you can use the HighWord() and
LowWord() functions. For example, the
following code fragment will display the
size of the Program Manager’s window:

size = GetWindowSize
(GetWindowHandle ("Program
Manager"))

Say "The Program Manager window is"
HighWord (size) "high and*
LowWord(size) "wide"

As discussed in the last issue in connec-

tion with the WINCMD language, the

SAY statement simply displays text in the

WINCMD.EXE window.

Notice in this example that instead of
using a separate line to get and save the
handle of the Program Manager window,
I simply included the GetWindowHan-
dle() function in the call to GetWindow-
Size(). While this is not necessary, some
people find it convenient to write pro-
grams this way. It reduces the number of
lines in the program and eliminates the
need to create a variable to hold the win-
dow handle. Note too that it might be
good to check the GetWindowHandle()
result before passing it on to GetWin-
dowSize().

The GetWindowPos() function is sim-
ilar to GetWindowSize(). Its single pa-
rameter is the window handle, and it re-
turns the position of that window
encoded in the returned value. Thus, by
making only a few minor changes to the
previous example, you can display the po-
sition of the Program Manager’s window
thus:

pos = GetWindowPos
(GetWindowHandle (" Program
Manager"))

Say "The Program Manager window is
at row" LowWord(pos) "and column"

HighWord (pos)

GetWindowState() returns the
state—iconic, restored, or maximized—

8314 PCMAGAZINE MAY 25,1993

UTILITIES

The New WCLIB Functions

Window Management Functions

Action

GetWindowHandle (title text) Returns the handle of the window with the matching title
text

SizeWindow (window handle, cx, cy) Resizes a window

MoveWindow (window handle, x, y) Moves a window

MinimizeWindow (window handle) Minimizes a window

MaximizeWindow (window handle) Maximizes a window

RestoreWindow (window handle) Restores a window

GetWindowSize (window handle) Returns the size of a window

HighWord (number) Returns the upper 16 bits of a number

LowWord (number) Returns the lower 16 bits of a number

GetWindowPos (window handle) Returns the xand y coordinates for a window
GetWindowState (window handle) Returns the state (icon/restored/zoomed) of a window

GetWindow (window handle, relation)

‘Returns the handle of a window related to a window

GetWindowText (window handle)

Returns the title text for a window

PostMessage (window handle, message
number, word param, long param)

Posts a message to a window

SendMessage (window handle, message
number, word param, long param)

Sends a message to a window

LoadlconfFile (icon filename)

Loads an icon and returns an icon handle

Setlcon (window handle, icon handle)

Sets a window's icon

Multimedia Functions

SendMCIString (MCI string)

Sends an MCI command string

GetMCIErrorString (MCI error number)

Returns an error message for an MCI error number

File Functions

FileOpen (filename, access mode) Opens a file

FileMovePtr (file handle, offset, flag) Moves a file read/write pointer
FileRead (file handle, bytes to read) Reads bytes from a file
FileWrite (file handle, data to write) Writes data to a file

FileClose (file handle) Closes a file

FileExist (filename)

Determines whether a file exists

Clipboard Functions

GetClipText ()

Retrieves text from the Clipboard

SetClipText (data for Clipboard)

Sets the Clipboard contents

Figure 1: By adding the new functions provided by WCLIB.WCL, you can write far more powerful programs
In the WINCMD command language. The functions are listed in the order they appear in the text.

of a window. This function takes a win-
dow handle as its one parameter and re-
turns a 1 if the window is in a restored
state, a 2 if the window is being displayed
as anicon, and a 3 if it is maximized.
GetWindow() is a powerful function
that can be used to track the relationships
between a window and its parent, owner,
or children. The function takes two pa-
rameters: the handle of the window, and
a parameter that requests that a specified
relationship will return a TRUE (non-
zero) value. Figure 2 lists the relation-
ships that can be requested and the value
of the second parameter to request that
relationship. GetWindow() returns the

window handle for the window that has
the specified relationship. If no window
meets the relationship requested, or if ei-
ther parameter passed to GetWindow()
is invalid, the function returns FALSE.

Unfortunately, to explain these win-
dow relationships would take an entire
article in itself. For those who are inter-
ested in learning more about the subject,
the best text is the classic Programming
Windows, by PC Magazine contributing
editor Charles Petzold.

The GetWindowText() function is the
inverse of GetWindowHandle(). It re-
turns the title text of a window from the
window handle passed to it. This function

provides an easy way to convert a window
handle returned by GetWindow() into a
title that can be used by AppActivate()
and the other functions of WINCMD that
require title text.

The next two functions, PostMes-
sage() and SendMessage(), give a WIN-
CMD program access to the very heart
of Windows: the message architecture.
Messages are the commands and notifica-
tions sent to windows by other windows
and by Windows itself. As with GetWin-
dow(), a complete explanation of window
messages is beyond the scope of this arti-
cle, but the functions are included in the
WCLIB repertoire to give WINCMD
programs an additional level of function-
ality.

Both PostMessage() and SendMes-
sage() take four parameters: the handle
of the window to which the message is
to be sent, the message value, the word

* Utilities by Modem

The PC Magazine utilities are avail-
able by modem from PC MagNet, a
ZiffNet service hosted by Compu-
Serve.

To find the phone number nearest
you, set your communications soft-
ware to 300, 1,200, 2,400, or 9,600 bits
per second, 7 data bits, even parity,

1 stop bit, and full duplex. then dial
800-346-3247 with your modem.
When the modem connects, press
Enter. At the HOST NAME prompt,
enter PHONES. Follow the menus
and note the number closest to you.
Or you can call 800-635-6225 (voice)
and follow the instructions and note
the number.

To obtain the current issue’s
utility free of charge: Dial the local
number; at the HOST NAME
prompt, type CIS: and at the USER
1D prompt, enter 60116.1. Then at
the PASSWORD prompt, enter
PCMAGUTIL.

To join ZiffNet: At the USER 1D
prompt, type 177000,5000. Then, at
the PASSWORD prompt, enter
PC*MAGNET. Finally, at the
ENTER AGREEMENT NUMBER
prompt, type PCMAGY3.

UTILITIES

parameter for that message, and the long
parameter. PostMessage() returns a zero
if the function fails, and a nonzero other-
wise. SendMessage() returns the value
returned by Windows® SendMessage()
call.

A handy use for PostMessage() is to
tell an application to terminate by posting
a WM_QUIT message to it. For example,
to tell the File Manager to terminate, you
would use the following line:

PostMessage (GetWindowHandle("File
Manager"), @x12, 0, 8)

Windows has hundreds of different
messages. Again, the best source for
learning about these messages is Charles
Petzold’s Programming Windows. Since
window messages are normally referred
to by their names rather than by their ac-
tual number values, you will need to refer

Register yvour name and enter your
American Express. MasterCard, or
Visa number. (1f you'd like to have
your company billed instead, call
CompuServe at 800-848-8990.) Your
personal user ID and a temporary
password will be displayed. A new
password will arrive in the mail within
ten days to confirm vour subscription.

ZiffNet membership costs $2.50
per month. This includes access to PC
Magazine Editors’ Choice awards,
Product Reviews Index, Weekly
News from PC Week, Buyers” Market,
ZiffNet Highlights. and the Support
Forum (which also includes the cur-
rent utility). CompuServe members
can join by entering GO PCMAG at
any CompuServe ! prompt.

Outside of these areas, PC MagNet
costs $6.30 per hour for 300-bps ser-
vice; $12.80 for 1.200 or 2,400 bps; and
$22.80 for 9,600 bps. Billing is based
on l-minute increments.

These programs can be copied but
are copyrighted. You may make cop-
ies for others as long as no charge is
involved, but making copies for any
commercial purpose is strictly prohib-
ited.

to the file WINDOWS.H, which is in-
cluded with the Windows Software De-
velopment Kit and with other Windows
development environments. You must be
very careful when using SendMessage()
and PostMessage(), since sending the
wrong message at the wrong time can be
disastrous to the target window and even
to Windows itself.

The last two functions in the window
management group are LoadIconFile()
and Setlcon(). These are designed pri-
marily to allow a WINCMD program to
set the icon of its own window, but with
care they can also be used to set the icons
for other windows on the desktop. Load-
IconFile() takes the filename of a Win-
dows icon file as its only parameter. If the
file is successfully loaded, Loadlcon-
File() returns a handle to the icon.

The two Setlcon() parameters are the
handle of a window and the handle of the
icon to use. The function returns the han-
dle of the icon that the window used pre-
viously. For example, to set the icon of
a WINCMD window with an icon from
the file TRASH.ICO, the statements
would be

hicon = LoadIconFile ("TRASH.ICO")
if (hicon <> @)

holdicon = SetIcon (hmain, hicon)

In this example, the file TRASH.ICO
is loaded and the variable hicon is set
to the icon handle. If the load fails,
hicon will be zero. The IF statement al-
lows the WINCMD window icon to be
set only if the icon from TRASH.ICO
was loaded successfully. Note that this ex-
ample is the first use of WINCMD's pre-
defined variable hmain, which is auto-
matically set to the handle of the WIN-
CMD window. The only other prede-
fined variable in the WINCMD language
ishinst, which is the instance handle for
the current instance of WINCMD.EXE.

MULTIMEDIA FUNCTIONS Microsoft
bundled its Multimedia Windows soft-
ware with the standard Windows 3.1. The
multimedia interface itself is fairly com-
plex: It has over 100 APIs! Fortunately,
however, Microsoft also provided a high-
level interface, called the Media Control
Interface (MCI), which provides a much
simpler way to communicate with multi-
media devices. Included in the MCl inter-

MAY 25,1993 PCMAGAZINE 319

GETWINDOW() Relationships
Value Meaning
First sibling for a child window
Last sibling for a child window
Next sibling for a child window
Previous sibling for a child window
The owner of the window
The first child window of-a window

The parent of a window

Figure 2: The second parameter to GetWindow()
must specify one of these allowed values.

DN | N -

face is a call that allows programs to use
ASCII strings to command multimedia
devices. (Make sure you don’t confuse
these strings with those you may use to
get your e-mail!)

The WCLIB SendMCIString() func-
tion allows WINCMD programs to send
MCI command strings to a multimedia
device. The single parameter to Send-
MCIString() is the command string to
send. If the command sent was successful,
SendMCIString() returns any response
the command returns. If the command
fails, SendMCIString() returns the string
ERROR, followed by the MCI error
number that was returned. For example,
if you sent the command

SENDMCISTRING ("open cdaudio")

UTILITIES

a response of ERROR 291 would indi-
cate that the CD-AUDIO device was al-
ready in use.

The GetMCIErrorString() function
lets a WINCMD program translate an er-
ror number returned by SendMCI-
String() into a string that describes the
error. The one parameter required is the
error number returned by SendMCI-
String(). Note, however, that a WIN-
CMD program must parse the error
string returned by SendMCIString() in
order to separate the error number from
its preceding ERROR string. For exam-
ple, the following lines will display an er-
ror string if an MCI string command fails:
answer = SendMCIString (string)
if (Substr (answer,® ,5)

== "ERROR")
say answer GetMCIErrorString
(substr (answer, 6, 10))
else

say answer

The MCIPLAY.WCM program shown
later in this article further illustrates the
use of these two multimedia functions.
FILE FUNCTIONS The WCLIB file func-
tions allow you to read and write files.
FileOpen() opens or creates a file for op-
eration. The function takes two parame-

ters: the name of the file to open and the
access mode. The allowable access mode
values are 0 for read-only, 1 for write-
only, and 2 for read/write access.
FileOpen() returns a file handle that
must be used for all other file functions.

The FileMovePtr() function changes
the position of the file read/write pointer;
for example, the location in the file from
which data will next be read or to which
it will next be written. The function takes
three parameters: the file handle, the
pointer offset value, and a flag that indi-
cates the method to be used when chang-
ing the pointer. The method flag can be
set to one of three values. A 0 indicates
that the file pointer should be moved to
the specified offset from the start of the
file. A method flag setting of 1 indicates
that the offset should be made from the
current file pointer position, and a 2 indi-
cates that the pointer should be offset
from the end of the file.

FileMovePtr() returns the new value
of the file pointer for the file. For exam-
ple, to set the file pointer to 100 bytes
from the start of a file, the command
would be

FileMovePtr (hFile, 108, @)

To move the file pointer ahead 300 bytes,

WORDFIX.WCM
Complete Listing

/| nenssennnn anEw P
// WinCmd program to f£ix problems with WinWord
r

// Copyright (c) 1993 Douglas Boling

//s=s==ss==ss==s=s=s=sssscssssssssssssssscssssSSSSIsSssosssssas

!
// Check to see if Word already running.
/! just switch to Word Window and exit
/!
handle = checkrunning ("Microsoft Word")
if (handle) do
appactivate (getwindowtext (handle))
exit
end

{7/

// Launch Word and wait .5 seconds
I/

"\winword.exe"

delay (5008)

i

// Attempt to get handle to Word's main window.

// we can't quit,.
1
handle = CheckRunning ("Microsoft Word")
if (handle == @)
exit

i

// Move and size window to my specs
i

MoveWindow (handle, 200, 15)
SizeWindow (handle, 908, 95@)

1f so.

EaEEasnEw

exit

checkrunning:
i

I

r

r

while (handle <> #) do
;: Get window text
&

1

I

if if (substr (text, @,

return handle
r

il

end
I

r
return 0

Figure 3: The WINCMD WORDFIX program manages the way Word for Windows starts.

320 PCMAGAZINE MAY 25,1993

// No matching window found, return @

!/ CheckRunning - A routine that scans all windows to see
// if a window has a partial matching title text

// Get first window in window list

handle = getwindow (hmain, @)

// Loop until no more windows

text = getwindowtext (handle)

f/ If the first part of the window text matches the
// argument passed to CheckRunning return handle

length{arg(l))) == arg(l))

// Get next window handle in window list

handle = getwindow (handle, 2)

MAGNET

UTILITIES

» PC Magazine Utilities Updates

As with all good software. the pro-
grams presented in PC Magazine are
upgraded and improved. Here's a par-
tial list of the programs on PC MagNet
that have been updated. To download
these files from the Utilities/Tips Fo-
rum, type GO ZNT TIPS, type LIB
or select Libraries from the menu,
then select Library 2 PCMAG
UTILS. Type DOW and the filename
listed below (for example. DOW
ANSLCOM). orselect Download a
File from the menu.

ADDIT.COM, Version 1.1
ANSLCOM. Version 1.3
BAT2EXEC.COM, Version 1.5

you would use the command
FileMovePtr (hFile, 308, 1)

Similarly, to set the file pointer to 200
bytes from the end of a file use
FileMovePtr (hFile, -208, 2)

A common use for this last method of
flag setting 1s to find the size of a file. If
you move the file pointer to an offset of
0 from the end of the file, the returned
value will be the file size. These examples
all assume that the file has been previ-
ously opened and that the file handle has
been assigned to the variable hFile.

The FileRead() function reads bytes
from a file and takes as its two parameters
the file handle and the number of bytes
to be read. The return value for the func-
tion is the actual data read, which can be
assigned to a WINCMD variable by using
the equal sign (=), as explained in the last
issue. The read is performed from the
current position of the file pointer. After
the read is done, the file pointer is up-
dated to point to the byte following the
last byte read. If there are no more bytes
in the file to read—if the file pointer is
pointing to the end of the file—File-
Read() returns -1.

FileWrite() does the complementary
job of writing to a file. It also takes two
parameters, the handle of the file, and a
variable that contains the data to be writ-

324 PCMAGAZINE MAY 25,1993

BCOPY, Version 1.2
CARDFILE.COM, Version 1.1
CHKFRAG.EXE, Version 1.7
CONFIG.CTL, Version 3.0
DIRMATCH.COM, Version 3.1
EMMA.COM, Version2.2
EMS40.SYS. Version 1.1
PCACCESS.EXE, Version 1.1
RN.COM, Version 3.0
SLICE.COM., Version 1.3
SNIPPER.COM, Version 1.2
ZCOPY.COM, Version 1.4

For a list of the programs that are
available on PC MagNet, download
PCMCAT.ZIP from Library 1 (Gen-
eral Info) of the Utilities/Tips Forum.

ten. FileWrite() returns the number of
bytes written to the file. If the file handle
is invalid or if the file is read-only, File-
Write() returns 0.

The FileClose() function closes a file
and takes as its only parameter the han-
dle to that file. WINCMD programs
should always close any files that have
been opened before the program termi-
nates.

Finally, the FileExist() function deter-
mines whether a specified file exists. The
function takes the name of the file as its
one parameter and returns TRUE if the
file exists, FALSE otherwise. Note that
the filename passed to FileExist() can
contain wildcards.

CLIPBOARD FUNCTIONS The final two
functions allow WINCMD programs to
read and write text to the Windows Clip-
board. GetClipText() takes no argu-
ments and simply returns any text data
in the Clipboard. If the Clipboard is
empty or if the data there cannot be ren-
dered in a text format (if it contains a bit-
map, for example,) GetClipText() re-
turns 0. SetClipText() empties the
Clipboard and then sets it to whatever
text has been passed to the function. The
function takes one argument: the text to
be placed in the Clipboard.

WCLIB AT WORK The WINCMD pro-
gram, WORDFIX.WCM, shown in Fig-
ure 3, demonstrates some of the new
functions of WCLIB in the process of
solving two of my major problems with

Word for Windows. One of these is that
Word does not remember its size and lo-
cation on the screen between launches.
The other is that the application displays
a message box demanding SHARE if a
second copy is launched. WORDFIX
fixes the message box problem by first
checking to see if Word is already run-
ning and, if so, switching the original
Word window to the foreground. If Word
is not running, WORDFIX starts the pro-
gram and then moves and resizes its
window.

The WORDFIX subroutine Check-
Running checks the title text of every
window on the desktop to see whether
a Word window is currently open on the
screen. This check consists of using
GetWindow() to return the first window
in the window manager list. (The window
manager is the part of Windows that
manages the windows on the desktop.)
The routine then gets the title text for
that window and compares it to the target
window text—in this case, the string
“Microsoft Word”. If the text matches,
CheckRunning returns the handle of the
window. Otherwise, GetWindow is called
again to get the next window in' the win-
dow manager list and loops back. The
loop ends after the last window has been
checked.

The value returned by CheckRunning
is compared with 0 to see whether Word
is running. If so, AppActivate() is called
to bring Word to the foreground. Since
CheckRunning returns a window handle
and AppActivate() needs the title text of
a window, GetWindowText() is used to
convert the handle into the necessary title
bar text.

Note that the CheckRunning subrou-
tine provides a way around the GetWin-
dowHandle() limitation I mentioned to-
ward the beginning of this article,
namely, that the function will fail if a win-
dow adds text on its title line beyond what
vou have specified.

If Word is not running, WORDFIX
launches it and waits half a second to al-
low Word to display its main window.
CheckRunning is called again to return
the handle to the Word window. If for
some reason Word did not start, WORD-
FIX simply terminates. Otherwise,
MoveWindow() and SizeWidow() are
called to place the Word window exactly

where you want it on your screen.
WORDFIX quietly terminates when it
has completed its business.

One endearing feature of WINCMD
programs is that they can be hidden be-
hind any icon in the Program Manager.
I have WORDFIX in my Programs group
with the Word for Windows icon set in-
stead of the default WINCMD icon. This
way it looks as if I am simply starting
Word, when in fact I'm usinga WINCMD
program to start the application.

The MCIPLAY.WCM program,
which is shown in Figure 4, uses the MCI
string interface to let you control multi-
media devices on your system. The pro-
gram is rather straightforward. It consists
of the MCI string functions discussed ear-
lier, the AskBox() function which is used
to query the user for the MCI command,
and a WHILE loop that continues the
process until the user has pressed the
CANCEL button on the dialog box. The
SAY statement is used to display any re-
turn messages from the MCI.

If you have the file GONG.WAYV in
your Windows directory, you can hear
MCIPLAY in operation by entering

open waveaudio
play waveaudio!\windows\gong.wav

close waveaudio

HOW WINCMD AND WCLIB WORK Space
limitations in the earlier issue precluded
a technical discussion of the WINCMD
interpreter, so I'll review that program
before considering WCLIB. The opera-
tion of the WINCMD interpreter centers
around its variable list. This list contains
all the keywords of the WINCMD lan-
guage—IF, WHILE, DO, and so on—
plus all the words that have been token-
ized from the ASCII file that the inter-
preter is currently executing as a
WINCMD program.

The process of running a WINCMD
program can be divided into three steps:
resetting the interpreter, loading and
tokenizing the WINCMD program, and
interpreting the program’s token list. The
first step involves loading the variable list
with the WINCMD language keywords.
Keywords are loaded into the list to-
gether with pointers to the routines in
WINCMD.EXE that will actually exe-
cute the keywords’ functions. Thus the IF

326 PCMAGAZINE MAY 25,1993

UTILITIES

MCIPLAY.WCM
Complete Listing

J /===ma== 7] ToEass=

// MCIPLAY - A WinCmd program that sends command strings using

// the SendMCIString function
// Copyright (c) 1993 Douglas Boling

i

// Ask the user for an MCI string command

1/
string = AskBox ("Enter MCI String", *
I/

)

// See if the user pressed the cancel button

/I
if (a+string == a)
string = EXIT
1/
// Loop until cancel pressed
/I
while (string <> exit) do
i/
// Send the MCI string
i
answer =
I
// Check for errors.
i/
if (substr (answer,@

SendMCIString (string)

+5) == "ERROR")

say answer getmcierrorstring (substr (answer, 6,

else
say answer
/"
// Get next command
/"
string = AskBox ("Enter MCI String",
if (a+string == a)
string = EXIT
end
exit

If error, print error string

18))

string)

PC

MAGNET

Figura 4: MCIPLAY is a WINGMD program for controlling multimedia devices.

keyword is loaded with a pointer to the
LocallF routine in WINCMD.EXE, for
example. The command line parameters
are then loaded into the variable list so
that they will be accessible to the pro-
gram. At this point, any function libraries
with a .WCL extension are called to load
their functions into the variable list as
well. (I'll discuss what happens when a
.WCL library is loaded shortly.)

Once the variable list has been initial-
ized, the WINCMD program to be exe-
cuted is read into a block of global mem-
ory. The file is then scanned. a word at
a time, with the first character of each
word determining how the WINCMD
tokenizer treats the word.

If the word begins with a letter or an
underscore, it is treated as a variable
name. WINCMD.EXE then searches the
variable list to see whether the word is
already there. If it’s not, the word is
added to the variable list and a pointer
for the entry is added to another list,
called the line roken list. (This list consists

mainly of pointers to tokens in the vari-
able list.) The order of the pointers in the
token list is the same as the order of the
words in the WINCMD program.

At this point the interpreter is con-
verting the ASCII words in the WIN-
CMD program into pointers to variables
and keywords in the variable list. Thus
when WINCMD is subsequently exe-
cuted, the interpreter only has to work
with the pointers and does not need to
retokenize each line as it is executed.

There can be other items in the line
token list besides pointers to entries in
the variable list. If the word being parsed
does not begin with a letter or an under-
score but with a number, the interpreter
converts the word into a 32-bit number
that is added to the token list as a numeric
constant. If the tokenizer sees a double
quote character, it assumes that anything
up to the next quote is a string constant.
Instead of adding the quoted string to the
variable list, the tokenizer adds it to the
line token list as a string constant.

“

To summarize the tokenization pro-
cess, let’s look at the simple, three-line
WINCMD program listed below.

FRED=5
IF (BOB<5)
BOB = FRED + 3

This program begins as an ASCII file.
After the file has been parsed, the vari-
able list contains all the keywords plus
two variable names, FRED and BOB:

While
Do
If

BOB
FRED

The original values assigned to the vari-
ables are the names of the variables, that
is, FRED is assigned the string “FRED”
and BOB is assigned the string “BOB".
As shown in Figure 5, the token list con-
tains such items as line-number tokens,
variable-pointer tokens, and numeric-
constant tokens. Note that the items in
the line token list are in the same order
as the words from the original file.

Once a WINCMD program has been
tokenized, the only remaining task is to
execute it, starting with the first item in
the line token list. If the item is a pointer
to a variable, the second item is checked
to see if it is an equal sign. If so, the items
beyond the equal sign are evaluated. and
the result is assigned to the variable at
the start of the line.

In the example shown in Figure 5, the
first line starts with the variable FRED,
so the interpreter checks to see if the sec-
ond item is an equal sign. Since it is, the
interpreter evaluates the rest of the items
on that line and assigns the result (in this
case 5) to the variable FRED. After the
first line of the program has been exe-
cuted, the entry in the variable list for
FRED also contains the value 5. Since
nothing has been assigned to the variable

328 PCMAGAZINE MAY 25,1993

UTILITIES

Line Token List

[LINED | VAR (FRED)

| OPERATOR (=) [CONSTANT (5}]

[LINE 1 [STATEMENT (IF) | VAR (BOB) |

OPERATOR (<) [CONSTANT (5)]

[LINE2 | VAR(BOB) | OPERATOR(=) |

VAR (FRED)

| OPERATOR(+) | CONSTANT(3) |

Figure 5: The WINCMD interpreter uses a list of pointers like this one to execute its programs.

BOB. the data for that entry simply con-
tains the string “BOB™.

The first item in the line token list for
the second line is a keyword, so the inter-
preter calls the routine pointed to by the
IF entry in the variable list. The IF rou-
tine then evaluates the items in the line
token list that make up the condition on
the line following the IF. Depending on
the result of the evaluation, this line may
or may not be executed. In the Figure 5
example, the variable BOB is still as-
signed the string “BOB”, so its numeric
value is 0. Since 0 is less than 5, the line
following the IF statement is executed.

The third line of this program, like the
first, is a simple assignment statement.
The items beyond the equal sign are eval-
uated and in this case FRED is 3, so the
result is 5 + 3 or 8. When the interpreter
tries to execute the line after the last as-
signment, it sees the end-of-file token,
meaning the program has finished.

Calling a predefined function is simi-
lar to processing a keyword. Function
names are listed in the variable list, along
with the keywords and variables. As with
keywords, predefined functions each
have a pointer in the variable list that
points to the WINCMD.EXE subroutine
that executes the function. Thus, execut-
ing a function is simply a matter of pars-
ing its parameters and calling the routine
that executes it.

ADDING LIBRARY FUNCTIONS Since
functions are simply items in the variable
list, it’s fairly easy for libraries such as
WCLIB to add functions. They are sim-
ply added to the variable list. When
WINCMD.EXE is launched, it looks for
files with a .WCL extension in its direc-
tory, and if any are found, LoadLibrary
is called to load the file as a DLL. If the
load is successful and the 'WCL DLL has
external entry points named WCLibLoad
and WCLibFunc, it is assumed to be a
WINCMD function library. The DLL

WCLibLoad routine is called immedi-
ately so the library can perform any ini-
tialization processing necessary, and the
WCLibFunc entry point is saved in WIN-
CMD.EXE. Later, when a function from
the library is called, the WCLibEntry
point is called to execute the function.
When the interpreter is reset, a third
entry point, WCLibReset, is called. The
library then uses a callback function in
WINCMD.EXE to add entries to the
WINCMD variable list. These entries in-
clude the name of the function and num-
bers that indicate the source DLL of the
function and a function number. The in-
terpreter uses these numbers to deter-
mine which DLL to call when the func-
tion is called in a WINCMD program.
When the WCLibFunc routine in
WCLIB is called, it uses the function
number passed with the call to look up
a pointer for the proper function to call
inside the DLL. The WCLibFunc call
also includes a pointer to a callback entry
point in WINCMD.EXE. This allows li-
baries such as WCLIB to call routines
that manipulate entries in the variable
list. The callback is necessary because
multiple instances of WINCMD.EXE
may be running at any one time. The call-
back allows the single instance of the
WCLIB DLL to operate on the correct
variable list each time it is called.
Fortunately, the user need not appre-
ciate the complex interaction between
WINCMD.EXE and WCLIB. Together
they provide a péwerful command lan-
guage that can be used to control your
Windows desktop. And the fact that
WINCMD can be extended with addi-
tional libraries makes its language an
ever-evolving process. Who knows?
There may be another WINCMD func-
tion library sometime in the future! O

DOUGLAS BOLING IS A CONTRIBUTING
EDITOR. TO PC MAGAZINE.

	Page313
	Page314
	Page319
	Page320
	Page324
	Page326
	Page328

